Cell adhesion and focal contact formation on linear RGD molecular gradients: study of non-linear concentration dependence effects.
نویسندگان
چکیده
UNLABELLED Cell adhesion onto bioengineered surfaces is affected by a number of variables, including the former substrate derivatization process. In this investigation, we studied the correlation between cell adhesion and cell-adhesive ligand surface concentration and organization due to substrate modification. For this purpose, Arg-Gly-Asp (RGD) gradient surfaces were created on poly(methyl methacrylate) substrates by continuous hydrolysis and were then grafted with biotin-PEG-RGD molecules. Cell culture showed that adhesion behavior changes in a nonlinear way in the narrow range of RGD surface densities assayed (2.8 to 4.4 pmol/cm(2)), with a threshold value of 4.0 pmol/cm(2) for successful cell attachment and spreading. This nonlinear dependence may be explained by nonhomogeneous RGD surface distribution at the nanometre scale, conditioned by the stochastic nature of the hydrolysis process. Atomic force microscopy analysis of the gradient surface showed an evolution of surface morphology compatible with this hypothesis. FROM THE CLINICAL EDITOR The authors observed by AFM nonlinear dependence of cell adhesion on RGD gradient surfaces with different surface densities. The nonlinear characteristics may be explained by non-homogeneous RGD surface distribution at the nanometer scale, conditioned by the stochastic nature of the hydrolysis process.
منابع مشابه
Using model substrates to study the dependence of focal adhesion formation on the affinity of integrin-ligand complexes.
The adhesion of mammalian cells is mediated by the binding of cell-surface integrin receptors to peptide ligands from the extracellular matrix and the clustering of these receptors into focal adhesion complexes. This paper examines the effect of one mechanistic variable, ligand affinity, on the assembly of focal adhesions (FAs) in order to gain mechanistic insight into this process. This study ...
متن کاملAn RGD spacing of 440 nm is sufficient for integrin alpha V beta 3- mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation
The synthetic peptide Gly-Arg-Gly-Asp-Tyr (GRGDY), which contains the RGD sequence of several adhesion molecules, was covalently grafted to the surface of otherwise poorly adhesive glass substrates and was used to determine the minimal number of ligand-receptor interactions required for complete spreading of human foreskin fibroblasts. Well-defined adhesion substrates were prepared with GRGDY b...
متن کاملNCO-sP(EO-stat-PO) surface coatings preserve biochemical properties of RGD peptides.
We have previously reported that star shaped poly(ethylene oxide-stat-propylene oxide) macromers with 80% EO content and isocyanate functional groups at the distal ends [NCO-sP(EO-stat-PO)] can be used to generate coatings that are non-adhesive but easily functionalized for specific cell adhesion. In the present study, we investigated whether the NCO-sP(EO-stat-PO) surfaces maintain peptide con...
متن کاملCell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands.
Integrin-mediated adhesion is regulated by multiple features of the adhesive surface, including its chemical composition, topography, and physical properties. In this study we investigated integrin lateral clustering, as a mechanism to control integrin functions, by characterizing the effect of nanoscale variations in the spacing between adhesive RGD ligands on cell spreading, migration, and fo...
متن کاملSynthesis and cell adhesive properties of linear and cyclic RGD functionalized polynorbornene thin films.
Described herein is the efficient synthesis and evaluation of bioactive arginine-glycine-aspartic acid (RGD) functionalized polynorbornene-based materials for cell adhesion and spreading. Polynorbornenes containing either linear or cyclic RGD peptides were synthesized by ring-opening metathesis polymerization (ROMP) using the well-defined ruthenium initiator [(H(2)IMes)(pyr)(2)(Cl)(2)Ru═CHPh]. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanomedicine : nanotechnology, biology, and medicine
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2012